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Traveling waves in an optimal velocity model of freeway traffic
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Car-following models provide both a tool to describe traffic flow and algorithms for autonomous cruise
control systems. Recently developed optimal velocity models contain a relaxation term that assigns a desirable
speed to each headway and a response time over which drivers adjust to optimal velocity conditions. These
models predict traffic breakdown phenomena analogous to real traffic instabilities. In order to deepen our
understanding of these models, in this paper, we examine the transition from a linear stable stream of cars of
one headway into a linear stable stream of a second headway. Numerical results of the governing equations
identify a range of transition phenomena, including monotonic and oscillating travelling waves and a time-
dependent dispersive adjustment wave. However, for certain conditions, we find that the adjustment takes the
form of a nonlinear traveling wave from the upstream headway to a third, intermediate headway, followed by
either another traveling wave or a dispersive wave further downstream matching the downstream headway.
This intermediate value of the headway is selected such that the nonlinear traveling wave is the fastest stable
traveling wave which is observed to develop in the numerical calculations. The development of these nonlinear
waves, connecting linear stable flows of two different headways, is somewhat reminiscent of stop-start waves
in congested flow on freeways. The different types of adjustments are classified in a phase diagram depending
on the upstream and downstream headway and the response time of the model. The results have profound
consequences for autonomous cruise control systems. For an autocade of both identical and different vehicles,
the control system itself may trigger formations of nonlinear, steep wave transitions. Further information is
available@Y. Sugiyama,Traffic and Granular Flow~World Scientific, Singapore, 1995!, p. 137#.
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I. INTRODUCTION

Increasing congestion and travel times are forcing a
ther extension of the road network. Nowadays, due to e
ronmental pressure, a compromise lies in the application
technologies to optimize the efficiency of existing roads w
respect to throughput and speed. Monitoring freeways
on-line traffic data provide important information for the
projects which are based on mathematical models of tra
flow @1#.

Hitherto the aim of these models was to reproduce p
nomena of traffic such as flow breakdown, stop-and-go t
fic and the speed of shock waves traveling upstream
causing rapid breaking. One approach is a car-follow
model. It consists of a dynamic equation for the speed
every car depending on its current speed, its inertia, the d
er’s reaction time, the headway to the car in front and
changing of the latter with time. Since every single car
modeled, it belongs to the class of microscopic models.

The advantage of car-following models is that they bo
model traffic flow and have practical applications in form
autonomous cruise control systems~ACCS!. These systems
link each car to the preceding car via a follow-the-lead
algorithm similar to the governing equation of a ca
following model. The target is to enable high flux driving
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stable and safe convoys. Insight into the phenomena ass
ated with car-following models gives insight into ACCS
One common and fundamental process is the merging
platoon of moving cars at one headway into a platoon m
ing with a second headway. This situation appears at bo
necks and lane merging. It is important to know what tra
sitions can possibly occur in the system to preve
instabilities and dangerous traffic situations.

In this paper we classify the rich variety of those tran
tions between different headways. We examine flows in
linearly stable regime of the Bando model@2#, in which the
acceleration of a carn is given by

ẍn5 v̇n5a@V~bn!2vn#, ~1!

wherexn is the position of the carn,vn its speed, andbn its
headway. The optimal velocity~OV! function

V~b!5tanh~b22!1tanh~2! ~2!

describes the desired speed of a driver at a distanceb behind
the car in front. It is a monotonic increasing function with
maximum speedV(b→`) and V(0)50. This corresponds
to ideal vehicles of length 0. The constant of proportionali
a, is called the sensitivity.

Bandoet al. showed that the model is unstable in a hea
way range

bc1
,b,bc2

~3!

for which
©2001 The American Physical Society07-1
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2V8~b!

a
.1. ~4!

For these conditions an initial uniform flow breaks dow
under the slightest perturbation and turns into stop-and
traffic. This is characterized by stable regions of high sp
merging into regions of low speed so as to conserve t
flux. The high and low speed flows are both in the sta
regime. The shape of the traveling fronts of these clust
their speed, the density inside and outside the cluster, as
as their outflow are characteristic parameters of traffic fl
@3#.

However, the dynamics of transitions in the two stab
regimes

b,bc1
~5!

and

b.bc2
~6!

have received less attention. Here, we examine the rich
of behavior which may develop when one stream mer
into a second. This is a generalization of the nonlinear tr
sition waves found in these earlier studies and provides
insight into the selection of nonlinear stop-go waves. In S
II we identify different transition phenomena as the size
headway jump across the transition varies. Section III rela
a nonlinear wave type of the stable regime to the stop-and
jam fronts of unstable flow. Although the main part of o
study uses the Bando car-following model, we include so
calculations in Sec. IV using another OV function sugges
by Herrmann and Kerner@4# which reproduces all the quali
tative features of data from the German autobahn altho
some quantitative details are different. This is to see whe
the range of wave types found in Sec. II are an intrin
feature of car-following models based on a relaxation te
In Sec. V we make some remarks on the possible impac
this transition classification on bottlenecks and ACCS.
brief discussion of a more realistic convoy of multi-spec
vehicles follows in the Appendix.

II. TRAVELING WAVES OF THE STABLE REGIME

The transition between traffic flows of different throug
put is a well observed phenomenon. Bottlenecks, speed
its, cars entering a jam or emerging from it are typical si
ations. Here, we study transitions which occur in free
moving traffic without local speed limits or any other arti
cial hindrance due to road layout. We expect the transiti
that evolve to travel along the road either up or down stre
Their direction and shape depend on the OV function and
sensitivity.

If the governing Eq.~1! is divided bya, it reads

1

a
v̇n5V~bn!2vn . ~7!

This shows that the inverse of the sensitivity can be in
preted as the inertia of cars. From the instability criterion E
03610
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~4! it is clear that a platoon of cars is more stable the sma
the inertia is. Heavier vehicles of higher inertia, which ca
not react sufficiently fast to changing traffic situations, a
more likely to cause flow breakdown. We therefore stu
traveling waves with increasing sensitivitya corresponding
to more stable flow. Ata52.0 the flow is just on the verge o
instability.

In our analysis we consider transitions which evolve fro
initial conditions similar to Fig. 1. The jump of headway
determined by the boundary conditionsb25b(x→2`) and
b15b(x→`). We prefer to present the figures with line
rather than with dots representing each car. This simpli
comparisons of traveling wave solutions~Fig. 2!.

A. Transition involving a decrease in headway:
Decelerating traffic

Once the optimal velocity functionV is given, the only
remaining parameter in the system is the sensitivitya. For
different a the analysis of the wave fronts in terms of u
stream and downstream headways can be summarized
diagram as shown in Fig. 2. On the verge of instabilitya
52.0), decelerating traffic can be classified in six categor
There are monotonic~region I!, oscillatory ~region II!, and
dispersive transitions~region III!. These can be explained b
looking at the fundamental diagram of this model~Fig. 3!
which describes stationary, homogeneous flow situati

@ v̇n[0⇒vn5V(bn)5V(b)#. The solid line illustrates the
flow q as a function of the densityr51/b,

q~r!5rv~r!⇒q~1/b!5
V~b!

b
. ~8!

In case of a monotonic traveling wave solution~shock wave
of region I!, both up and down stream headways are grea
than the turning pointbtp52.0 and occur at a densityr that
is smaller than the turning pointr tp51/btp50.5 ~Fig. 3!. We
can interpret this result in the limita@1. Then the Bando
model corresponds to the continuum model of Lighthill a
Whitham @5#

r t1qx5r t1„rV~1/r!…x50. ~9!

FIG. 1. Initial conditions (t50): various wave types evolve
from a discrete jump in headway~Fig. 1!.
7-2
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TRAVELING WAVES IN AN OPTIMAL VELOCITY . . . PHYSICAL REVIEW E 63 036107
FIG. 2. Transitions of decelerating traffic (a52.0) derived from numerical data: I: monotonic, II: oscillatory, III: Bando wave and sec
shock wave, IV: Bando wave, plateau and dispersive tail, V: jump and dispersive tail for large jumps in headway, VI: purely dispers
region of accelerating traffic~Fig. 5!.
ha

e

up

ed
wn
the
am
For this model the method of characteristics shows t
the local wave speedc(r) is given by the slope of the
tangent of the fundamental diagram at its corresponding d
sity

c~r!5qr~r!. ~10!

For densities greater than the densityrmf51/3 of maximum
flow the slopes are negative and the information travels
stream.
03610
t

n-

-

For waves of region I the local upstream wave spe
as a function of position in the wave increases do
the road. This leads to a shock wave solution where
wave speed is given by its upstream and downstre
densities

c5
q~r1!2q~r2!

r12r2
. ~11!
7-3
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PETER BERG AND ANDREW WOODS PHYSICAL REVIEW E63 036107
For purely dispersive waves~region VI!, both upstream and
downstream densities are bigger than the turning point
the magnitude of the wave speed across the profile now
creases. This means that the speed of propagation of in
mation decreases as one moves downstream. Hence dr
entering the transition react faster to the traffic situation th
drivers further downstream. Therefore, the number of driv
who are part of the decelerating maneuver grows and a
persive tail forms. A traveling wave solution does not ex
in this regime.

The oscillatory waves~region II! always have an up
stream density smaller than the turning point, but their dow
stream density can be smaller or bigger than the turn
point. It is therefore not as straightforward to interpret t
results. One has to be aware that the fundamental diag
shows the flow as a function of the density only for a stea
flow. Generally, for nonstationary situations, the flow is no
function of the density any more. A givenr might corre-
spond to various flows depending on the traffic situati
Hence the wave speed is not a function of the density. O
example is a traveling wave solution~region I!. Every point
along the profile has the same wave speed even though
density varies.

However, in the limit of transitions involving sma
changes of headway and witha→`, we expect a monotonic
transition, since cars assume their desired speed immedi
and react sufficiently fast to the surrounding traffic situatio
For greater jumps in headway and smaller values of the
sitivity, deviations from the monotonic adjustment occur
oscillatory waves in a similar fashion to the transition fro
overdamping to underdamping of a spring. With these lar
changes in headway, the inertia of cars is too big to allow
simple monotonic transitions in flow.

However, when the jump in headway increases to a c
tain value the oscillations become so big that the wave jum
on to another solution~region III!. It consists of two shock
waves of different speeds with a growing region of slo
moving traffic in between. This solution first jumps from th

FIG. 3. Fundamental diagram: the transitions oscillatory wa
→ Bando wave (osc→ bw) and the Bando wave~bw! itself ap-
proach the fastest wave with increasinga.
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upstream headwayb2 to an intermediate headwaybbw , rep-
resented by the dotted line between regions III and IV in F
2, before it eventually matches the downstream headw
through another shock wave.bbw is a function ofb2 and the
sensitivitya and can only be determined numerically@6#. We
refer to this nonlinear wave between the upstream head
b2 and the intermediate headwaybbw as a Bando wave. Fo
all points of region III the solution consists of two shoc
waves of different speeds.

For lower downstream headways thanbbw , the transition
involves a Bando wave followed by a plateau of increas
length with a dispersive tail~region IV!. Transforming the
headways of this graph,b253 andb150.5, into the funda-
mental diagram Fig. 3, the corresponding densities are ra
far apart from each other with the turning point in betwee
Therefore, the magnitude of the local wave speed acro
monotonic profile between these two headways firstly
creases, leading to a shock wave, and then decreases, le
to a dispersive wave.

The wave profile we obtain consists of these two types
waves as expected, with a plateaubpl'1.3 overshooting the
turning pointbtp52 due to the inertia of cars. The platea
forms because the upstream speed of the shock wav
higher than the local speed of the dispersive tail at its on
In terms of fluxes, the shock wave provides more cars
unit time ~outflow of the shock wave! than cars beginning to
break at the onset of the dispersive tail~inflow of the disper-
sive tail!.

If the upstream headway is too big~region V!, the differ-
ence of speed between the shock wave and the onset o
dispersive tail is negligible. The wave profile assumes a
lution where the dispersive tail and the shock wave have
same speed and no plateau forms.

For higher sensitivities, equivalent to smaller inertia~Fig.
4!, the cars react faster to the traffic situation. Therefore,
region of oscillatory waves, and hence Bando waves, shr
until the latter eventually disappears. Monotonic and pur

e

FIG. 4. Transitions of decelerating traffic (a52.4): with in-
creasing sensitivity regions III and IV shrink until they vanish. R
gion V spreads out between regions IV and VI. The region II
oscillatory waves shrinks too, since the traffic flow reacts faste
changes in headway due to lower inertia;1/a.
7-4
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TRAVELING WAVES IN AN OPTIMAL VELOCITY . . . PHYSICAL REVIEW E 63 036107
dispersive waves~I and VI! still exist and waves of type V
take the place of plateau waves~type IV!. For large a,
a@2.0, four different wave types remain: monotonic~I!, os-
cillatory ~II !, purely dispersive~VI !, and shock wave plus
adjoining dispersive tail without plateau in between~V!.

B. Transition involving an increase in headway:
Accelerating traffic

Once the diagrams for the wave types of decelerating t
fic ~Figs. 2 and 4! are worked out, those of accelerating tra
fic can be obtained by a mathematical transformation.
subtracting the governing equations~1! for two adjacent cars
n11 andn, we obtain the equation for thenth headway

b̈n5a@V~bn11!2V~bn!2ḃn#. ~12!

For the OV function, Eq.~2!, this equation is invariant unde
the transformation

b8542b. ~13!

As a consequence the wave profiles are symmetric abob
52 and this relates accelerating and decelerating traffic.
diagrams showing the variety of the wave types associa
with accelerating traffic~Figs. 5 and 6! are simply derived by
reflecting the diagrams Figs. 2 and 4 at the point~2.0/2.0!.
Here, the dispersive regionV8 only appears for higher value
of a ~Fig. 6!, because its upstream headway would be ne
tive and hence meaningless~Fig. 5!. Similarly we discover
the same types of transitions and the disappearance of B
waves and plateaus for sufficiently higha.

C. Fastest wave and Bando wave

For any given upstream headwayb2 the model predicts a
fastest traveling wave; this can be identified from the fun
mental diagram.

FIG. 5. Transitions of accelerating traffic (a52.0): I8: mono-
tonic, II8: oscillatory, III8: Bando wave and second shock wav
IV 8: Bando wave, plateau and dispersive tail, VI8: purely disper-
sive; DT: decelerating traffic~Fig. 2!; the wave phenomena ar
equivalent to decelerating traffic apart from a missing region8
analogous to region V in Figs. 2 and 4.
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For a headwayb2 , equivalent to a densityr251/b2 ,
the downstream density of the fastest wave is given by
extremum of the wave speed Eq.~11!. Setting the first de-
rivative to zero@c8(r1)50# and excludingr25r1 leads to

q8~r1!5
q~r1!2q~r2!

r12r2
~14!

which can be solved numerically for any OV functionV.
Equation~14! defines the maximum speed as the point wh
the chordr2→r1 and the tangent atr1 are identical. It
does not necessarily mean that this traveling wave ex
since the transition can also occur as a dispersive wave.

In Fig. 3 we chooseb253.0 and find the fastest wav
possible as the tangent of this point onto the flow curve. T
downstream headway,b151.54, of the fastest wave corre
sponds to a densityr150.65. Asa increases the headwa
jump at which the oscillatory traveling wave~region II! is
replaced by the Bando wave~region III! approaches the
headway jump associated with the fastest wave. Simila
the headway jump at which the Bando wave~region III! is
replaced by region IV also approaches the headway ju
associated with the fastest wave. This is consistent with
shrinkage of region III~Figs. 2 and 4!.

The curve of maximum speed Eq.~14! can now be added
to Figs. 2 and 4 which yields Fig. 7. It shows that there a
only two points where the fastest wave exists and these
the vertices of region III. For values ofa greater than the
bifurcation point,a52.43, region III disappears and the
are no Bando waves in the system. The fastest waves
dicted by the fundamental diagram lie entirely in the disp
sive regions V and VI. For values 2.0<a<2.43, they are
either part of the dispersive regimes V and VI or of t
Bando wave regime III. In the latter case the solution jum
on to the slower Bando wave. We conclude that in the sta
regime,a>2.0, the fastest wave predicted by the fundam
tal diagram can only be found for two cases which cor
spond to the vertices of region III, the Bando wave regio

FIG. 6. Transitions for accelerating traffic (a52.4): again, with
increasing sensitivity regions III8 and IV8 shrink until they vanish.
Similarly region V8 spreads out between regions IV8 and VI8 and
eventually takes the place of region IV8.
7-5
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Since this region disappears for largea, no fastest wave can
be found for highly stable traffic,a.2.43.

III. STABLE AND UNSTABLE FLOW PATTERNS

In this section we show that the jam fronts of stop-and
traffic correspond to two specific Bando wave solutions
the unstable regime.

Holland @7# investigated the plateau effect for unstab
flow a,2.0. This can be discovered by setting up spec
road conditions as illustrated in Figs. 8 and 9. The first fig
exhibits how an initial steady flow of uniform headway (bn
[2.0 at t50) evolves, if the leading car approaches r
traffic lights ~X! and decelerates until it comes to a stands
at x50. The wave profile of Fig. 9 evolves from the sam
initial conditions. Now the leading car accelerates att50
and x50 from vn51(t50)5V(b52) to maximum speed

FIG. 7. For a given upstream headwayb2 the fastest wave
theoretically possible is either not accessible or just for two ca
Bando waves. Otherwise it is either part of region III~Bando wave!
or of the dispersive domains V and VI.

FIG. 8. Onset of instability: wave profile of a platoon of ca
after t5500 anda51.0 for an initial (t50) homogeneous flow o
headwayb50 and a leading car atx50.
03610
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vn51(t→`)5V(b→`)5tanh(̀ )1tanh(2). This simulates
the end of a temporal speed limit along a motorway. Ata
51.0 the model is unstable forb52.0 and aftert5500 the
oscillations in the platoon mark the onset of traffic brea
down. However, we can already observe the plateau effe

Now one can set up a map,bpl(b2) say, which specifies
the plateau headway as a function of the upstream head
for both accelerating and decelerating traffic. The qualitat
difference between the maps of the stable (a>2.0) and un-
stable (a,2.0) regimes is significant as shown in Fig. 1
The line 42b1 that represents the invariance of Eq.~12!
under the transformation~13! cuts the curve of the Bando
waves only fora,2.0. The intersections tell us how to fi
Bando waves for accelerating and decelerating traffic
gether to obtain the traveling jam fronts of stop-and-go tr
fic. Starting with an arbitrary headwayb2 of, say, decelerat-
ing traffic for a51.0, the map gives the correspondin
headwayb1 of the plateau and hence the Bando wave. N
using this as the new headwayb2 for accelerating traffic, we
obtain the corresponding headway for the next Bando wa

s,

FIG. 9. Onset of instability: wave profile of a platoon of ca
after t5500 anda51.0 for a freely accelerating, leading vehicle
x50 andt50 from b252.0.

FIG. 10. Phase diagram of the Bando wave for different se
tivities a. Only for a,2 can they be fitted together to yield th
typical jam fronts of unstable flow.
7-6
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TRAVELING WAVES IN AN OPTIMAL VELOCITY . . . PHYSICAL REVIEW E 63 036107
Therefore the curve defines a recursive mapb15 f (b2) and
b25 f̄ (b1), respectively, for both decelerating and accel
ating traffic. Iteration leads to two fixed points, which corr
spond to the intersections with 42b1 , and this gives the
stop-and-go pattern fora,2.0. Fora>2.0 there are no fixed
points and hence no jam front pattern. This may be und
stood since the flow is stable and no flow breakdown
pears.

Moreover, the asymptotic behavior of the curvea52.0
suggests that the fixed points are a linear function foa
&2.0. In fact, for an OV function Eq.~2! Komatsu’s @8#
results reveal that the jumpDb of headway across the wav
front neara52 can be approximated by@7#

Db51.581A120.5a. ~15!

This analysis shows that Bando waves define one clas
solutions for the stable and the unstable regime. Plateau
fects can also be found for various upstream headways in
unstable regime. However, when the instability sets in, ev
tually only two specific solutions of this class are picked o
and evolve. These are the stable, nonlinear stop-an
waves. This establishes a link between Bando waves and
work of Bandoet al. @1,2#.

IV. COMPARISON WITH OTHER OV FUNCTIONS

It is of interest to examine whether similar types of tra
sitions occur for other OV functions. This might support t
idea that the wave types found in Sec. II are an intrin
feature of car-following models with relaxation terms bas
on a OV function. Kerner and Konha¨user considered a mode
based on traffic data that does not depend on the car num
and, therefore, averages over all cars to obtain a dyna
equation of the form@4#

v̇n5
1

T
„Vkk~bn!2vn… ~16!

with an OV function

Vkk~b!5v0F S 11exp
1/b2r i

rmaxs
D 21

2dG ~17!

and

d5S 11exp
12r i /rmax

s D 21

. ~18!

Here the parameters are estimated to have the following
ues based on data from the German autobahn:

T50.985 s, ~19!

rmax5180 veh./km, ~20!

v05100.8 km/h, ~21!

r i536.5 veh./km, ~22!
03610
-

r-
-

of
ef-
he
n-
t
go
he

-

c
d

er
ic

l-

s50.028 75. ~23!

rmax is the average density of cars in a jam and therefore
inverse the average lengthbmin51/rmax that a car occupies
v0 determines viav fªVkk(`) the free flow speed. Thes
two quantities can be measured easily. It is far more ch
lenging to fit T, r i , and s to traffic data; one significan
difficulty, amongst others, is that the flow consists of a ran
of different vehicles. Nevertheless this model simulates d
that was obtained from a German autobahn surprisingly w
@4#.

In comparison to the Bando model, there are three ma
features which are important: the speed is only positive
headways bigger thanb min ~Fig. 11! and by analogy the flow
is only positive for densities smaller thanrmax ~Fig. 12!.
Second, the flow is unstable in a regimebc1

'18 m,b

,36 m'bc2
. These two features are different from th

stable Bando model. On the other hand, one feature tha
models have in common is that the flow has a turning po
and this seems to be important for traveling waves as
cussed in more detail above.

Figure 13 shows how linearly unstable platoons of c
with headways of 35 m and 30 m, respectively, merge. Af

FIG. 11. The optimal velocity functionVkk(b) of the Kerner–
Konhäuser model. The flow is unstable for headways 18 m,b
,36 m. bmin is the average space that cars occupy in a stands

FIG. 12. Fundamental diagram: the flow vanishes for stands
(rmax). The curve contains a turning point like the Bando mode
7-7



it
e

m

g
-

b
Th
n-
o
a

g

e
pa

ro
An
di
u

if
do

s an

his
g an
ad.

,
i-
k–
es

ays
a-

es
-

es

s
dy,
se
ns

sts

. It
two

ble
ne
per-
es

ca-
for
ea-
he

on

ry
s to
ns.
tain
e to
road
de-

ition.

e

a
a

PETER BERG AND ANDREW WOODS PHYSICAL REVIEW E63 036107
500 seconds the flow consists of clusters of vehicles w
rapidly oscillating headways which are followed by th
stable jam pattern of stop-and-go traffic between26 km
and 22 km. The headways of the latter, 48 m and 12
respectively, are not symmetric around the turning pointbtp
'26 m @q9(1/btp)50# any more, since the correspondin
dynamic equation~12! for the headways is not invariant un
der an appropriate transformation analogous to Eq.~13!.

However, this system contains Bando waves for suita
upstream and downstream headways shown in Fig. 14.
nonlinear wave is formed very rapidly from the initial co
ditions. The Bando wave already appears before the fl
becomes unstable and breaks down. Bando waves can
be found for smaller, stable upstream headways as lon
the downstream headway remains stable.

In a more detailed numerical study we found most typ
of transitions of the stable regime as classified in Sec. II a
from the oscillatory~region II! and dispersive~region V!
solutions. The oscillatory wave type could not be rep
duced, even though it is observed in stable traffic flow.
explanation for this discrepancy between the model pre
tions and the data may be that it is necessary to introd

FIG. 13. The evolution of an initial jump in headway in th
unstable regime. The typical jam cluster forms at the tail.

FIG. 14. Cars can adjust from an upstream to a downstre
headway via a Bando wave even though parts of the headw
involved in this transition are unstable.
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delay time explicitly into the dynamic equations, no matter
they are continuum or car-following models, as the Ban
model Eq.~1!.

V. PERIODIC BOUNDARY CONDITIONS

The results presented so far refer to a step function a
initial condition ~Fig. 1!. It is of interest to know how the
profile evolves in case of periodic boundary conditions. T
can either be considered as a train of density pulses alon
infinitely long road or as one density pulse on a circular ro

The latter case was investigated by Nagatani@9#. He stud-
ied the relaxation process from nonuniform flow to uniform
steady flow in freely moving traffic on a circular road. In
tially there are two density regions connected by kin
antikink waves. As time evolves the density profile assum
a triangular shock wave solution whose amplitude dec
with time. This solution can be described by Burger’s equ
tion derived from the original optimal-velocity model@Eq.
~1!# in the stable regime.

However, a triangular shock wave solution also aris
from an initally uniform flow on a straight road that is dis
turbed by a pulselike density variation@6#. This shows that
unless we are in the metastable regime@4#, stable wave struc-
tures can only be found on straight roads for different valu
of the upstream and downstream headways (b25” b1). For
periodic initial conditions or periodic boundary condition
~circular roads! the wave profile eventually assumes a stea
uniform flow solution. This can be explained in the pha
diagrams, Figs. 2 and 5. We consider two step functio
connecting regions of two different headways, saybhigh and
blow , as initial conditions. This means that the profile exi
of wave solutions (bhigh,blow) and (blow ,bhigh), respectively,
corresponding to two points in the diagrams, Figs. 2 and 5
can be seen from Figs. 2 and 5 that at least one of these
points lies in one of the dispersive regimes. It is not possi
to connect a monotonic or oscillatory wave to another o
and thus obtaining a stable wave structure. Therefore, dis
sion is inevitable and the wave profile eventually assum
the steady, uniform flow solution.

VI. IMPACT ON BOTTLENECKS AND AUTONOMOUS
CRUISE CONTROL SYSTEMS

The effects we have discovered have significant impli
tions for speed limits and bottlenecks. They predict that
certain jumps of headway determined by either of these m
sures the traffic flow locks on to a nonlinear wave. T
bottleneck determines the downstream~upstream! headway,
whereas the type of transition that evolves also depends
the flow further upstream~downstream!. The most desirable
transition in a bottleneck is the monotonic type. Oscillato
waves cause rapid breaking and acceleration which lead
higher fuel consumption and dangerous traffic situatio
The same applies to Bando waves which, in addition, con
a congested region. Therefore, it might be of greater us
set up bottlenecks and speed limits stepwise along the
depending on the upstream traffic situation. Each stretch
creases the speed by a moderate and monotonic trans

m
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This can be a safer and more stable method than a loca
large decrease in speed at a speed limit.

This has to be taken into account when implement
ACCS. The main goal of this application is to couple cars
a convoy by electronic control of their speed and accele
tion by an algorithm based on a car-following law. Th
should result in a stable autocade of high safety and flux

The major problems of convoy driving are the merging
cars at on- and off-ramps or at lane merging and the adj
ment to bottlenecks and speed limits. All these road featu
have an impact on the autocade by changing the densit
cars locally. From our analysis we expect transitions betw
these regions of different headways traveling upstream
downstream along the road. The aim of any control al
rithm would be to avoid oscillatory and Bando waves.

A more realistic discussion should include the simulat
of varying vehicle characteristics amongst the platoon. T
represents either different driver types, cars or control al
rithms. Different characteristics can be simulated by
variation of the sensitivity or the OV function as a functio
of the car number. This is a comprehensive, stochastic t
However, even a simple oscillatory variation of the sensit
ity along the platoon reveals interesting results.

As shown in the Appendix, it only requires a few cars
cause phase transitions in the system which lead to time
lays and harsh breaking maneuvers. The wave type
evolves~monotonic, oscillatory, Bando wave, etc.! depends
on the composition of the vehicles with regard to their co
trol algorithms. In a multispecies flow these vary from car
car. It is therefore harder to predict what implications a giv
speed limit or bottleneck has on a multispecies flow. Ho
ever, the accuracy of the predictions increases when the
trol algorithms converge.

Speed limits which vary with time can be regarded a
changing bottleneck. They can be adjusted to the cur
upstream traffic situation. However, there are bottlene
which have static characteristics such as maximum speed
throughput given by the road layout, for example. In th
case optimal safety, stability, and flux might be obtained
dynamic algorithms which adjust to the downstream bot
neck situation. In-vehicle information of the oncoming traf
situation as realized by mobile technology or beacons al
the road could deliver the required data.

VII. CONCLUSION

We investigated different types of wave solutions in
stable, optimal velocity model of road traffic, the Bando c
following model. Once the parameters of the model, the s
sitivity and the OV function, are given, the wave types c
be represented in a diagram by their upstream and do
stream headways. There are six possible transitions~Fig. 2!:
monotonic, oscillatory, purely dispersive, shock wave p
dispersive tail, shock wave plus plateau and adjoining d
persive tail, a nonlinear shock wave plus plateau and a
ond shock wave.

In the latter case the two shock waves have differ
speeds and are separated by a growing region of congest
free flowing traffic. For sufficiently high sensitivities equiva
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lent to small inertia, the cars react fast enough to the tra
situation and the wave does not assume this specific solu
any more. For these sensitivities Bando waves and plate
are not solutions.

For a given upstream headway the fastest traveling w
predicted from the fundamental diagram is either not acc
sible or, only for two specific upstream headways, just
Bando waves. In the first case its corresponding headw
are either part of the dispersive regime or it locks on to
slower Bando wave.

There is a strong connection between Bando waves
traveling jam fronts of stop-and-go traffic of unstable flo
They are analogous, but while Bando waves can be found
various upstream headways for a given sensitivity, these
fronts are uniquely determined. Jam and free flow densi
are functions of the sensitivity only.

The wave types can be interpreted by the fundame
diagram. The higher the sensitivity the faster the cars re
and the closer the actual dynamic flow is to the equilibriu
flow. However, for small sensitivities the actual flow ma
differ significantly from the fundamental diagram. Therefo
an interpretation of the observed transitions is not as strai
forward any more.

We compared our results to a different car-followin
model based on parameters fitted to real traffic data.
found all types of waves apart from the oscillatory transitio
and one dispersive type due to the choice of the sensiti
parameter. It shows that the wave types we found might
an intrinsic feature of car-following models with relaxatio
terms.

The Bando waves play an important role when consid
ing varying sensitivities. Once the system assumes this s
tion, the growing region of congested traffic between the t
shock waves does not necessarily dissolve when returnin
higher sensitivities. Hence, even in a linearly stable sys
we can find irreversible phase transitions.

This has to be taken into account when implementing
tonomous cruise control systems. The algorithms must
fitted in order to avoid increasing travel times and ha
breaking maneuvers. This might be realized by dynamic
gorithms which take the current downstream traffic situat
into account.
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APPENDIX: MULTISPECIES FLOW

The advantage of discrete car-following models compa
to continuum models shows when different vehicles on
road are simulated. Clearly, one has to expect new effects
the impact of a lorry on an autocade of identical cars s
gests@10#.

Using the Bando model there are two ways to simul
varying vehicle characteristics: introducing functionsan for
the sensitivity or for the OV functionVn depending on the
7-9
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vehicle number. Here, we restrict ourselves to vary the s
sitivity a only. This is because we can interpret numeri
results by using the diagrams Figs. 2, 4, 5, and 6.

In contrast a continuum model now contains an additio
differential equation for the sensitivity and is more difficu
to simulate numerically.a must be a function of space an
time a(x,t), since it has to travel with the cars and hence
flow. As an example we consider the analogous continu
model of the discrete Bando model as derived in Ref.@6#. In
addition to the coupled, first order, partial differential equ
tions ~PDE! for densityr and speedv,

r t1~rv !x50, ~A1!

v t1vvx5a@V~r!2v#1aV8~r!F rx

2r
1

rxx

6r2
2

rx
2

2r3G , ~A2!

we also obtain a PDE fora. Because it must be constant fo
each car, we obtain simply

d

dt
a~x,t !5at1vax50. ~A3!

The flow is then determined by the initial conditions

r~x,0!5r0~x!, v~x,0!5v0~x!, a~x,0!5a0~x!. ~A4!

For slowly varying sensitivities across the autocade and
the limit of small changes in headway this model is an ac
rate first order approach of the discrete version@6#. For ran-
domly distributed sensitivities and rapidly changing hea
ways as in real traffic flow, however, the solutio
increasingly diverge from this model.

A classic example is a single truck of sensitivityatr sur-
rounded by cars ofac . Even though if the convoy is o
almost uniform density and speed, the gradient of the se
tivity ( d/dx)a(x,t) in the continuum picture can be ver
large near the truck, if the distance to its neighboring

FIG. 15. Initial (t50) Bando wave fora52.0 followed by a
convoy of cars with higher sensitivitya52.4. The Bando wave
changes shape but neither dissolves nor assumes the oscil
shape as in Fig. 16.
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hicles is small. Already for this simple case the continuu
model will fail to reproduce an appropriate picture of th
actual traffic events.

In this work we varied the sensitivity as a function of th
car-numbern in a sinusoidal form

an5a01e sin~2pn/N! ~A5!

and investigated how traveling waves change in shape w
time. Even though it seems to be both an unrealistic dis
bution and very specific, it reveals that the system can
through an unexpected phase transition: once the system
switched to a certain state like the Bando wave, for exam
it does not necessarily assume its initial wave solution ag
an oscillatory transition for instance, that corresponds to
average sensitivitya0. Whether a phase transition occurs
not depends in a complex manner on the parametersa0 , e, n,
andN.

Figure 15 shows an initial Bando wave (t50) for a
52.0. For t.0 the sensitivity of the upstream cars is co
stantly a52.4. From Fig. 4 (a52.4, b253.0, b1

ory

FIG. 16. Evolution of a transition fromb253.0 tob151.6 with
varying sensitivityan52.410.2 sin(2pn/100): the shape remain
oscillatory.

FIG. 17. Evolution of a transition fromb253.0 tob151.6 with
varying sensitivityan52.410.4 sin(2pn/100): Bando wave forms.
7-10



io
h
re
e
th
a

as
ta

to
e
a

hich
ur-
ve
not
of

me.
his

of
an-
an
s

en-
x-

ed

ions

TRAVELING WAVES IN AN OPTIMAL VELOCITY . . . PHYSICAL REVIEW E 63 036107
51.6) we should eventually expect an oscillatory transit
rather than a Bando wave. However, once the system
assumed this solution consisting of two waves, it cannot
turn to its initial state simply because the two waves ke
going at different speeds. Thus, they do not merge into
state shown in its corresponding diagram. Only the plate
the intermediate headway, changes its value.

Figures 16 and 17 give examples of how such a ph
transition might occur. The first represents the steady s
solution (t50) of a transition fromb253.0 tob151.6 and
sensitivity a52.4 ~Fig. 4!. For t.0 the sensitivity of the
upstream cars varies like

an52.410.2 sin~2pn/100!. ~A6!

One cycle contains 100 cars and its mean is obviouslya0
52.4. After t51000 we still find an oscillatory transition
even though the cycle contains sensitivities analogous
Bando wave. However, their percentage of the whole cycl
simply not sufficient to switch the state to this nonline
wave.

This changes if we increase the amplitude to

an52.410.4 sin~2pn/100! ~A7!
ug
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~Fig. 17!. It still gives the same meana052.4 but a higher
varianceDa

Da5
1

100 (
n50

100

~an2a0!2, ~A8!

and hence a higher percentage of those sensitivities w
correspond to a Bando wave. Now there is enough time d
ing a cycle to form a sufficiently wide gap between this wa
and its corresponding downstream shock wave that does
dissolve during the next cycle. Therefore, a growing gap
varying shape forms that leads to an increase in travel ti
An analogous situation appears for accelerating traffic. T
leads to a decrease in travel time.

These few examples show already that a small fraction
vehicles can cause a phase transition in traffic flow. For r
domly distributed sensitivities among the vehicles the me
a0 and the varianceDa seem to be the two decisive variable
in the system that determines what state it most likely ev
tually assumes. Varying sensitivities might, therefore, e
plain effects of traffic flow which have not been reproduc
with constant sensitivitya and OV functionV yet. This sto-
chastic approach delivers plenty of problems and quest
for future work.
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