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Traveling waves in an optimal velocity model of freeway traffic
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Car-following models provide both a tool to describe traffic flow and algorithms for autonomous cruise
control systems. Recently developed optimal velocity models contain a relaxation term that assigns a desirable
speed to each headway and a response time over which drivers adjust to optimal velocity conditions. These
models predict traffic breakdown phenomena analogous to real traffic instabilities. In order to deepen our
understanding of these models, in this paper, we examine the transition from a linear stable stream of cars of
one headway into a linear stable stream of a second headway. Numerical results of the governing equations
identify a range of transition phenomena, including monotonic and oscillating travelling waves and a time-
dependent dispersive adjustment wave. However, for certain conditions, we find that the adjustment takes the
form of a nonlinear traveling wave from the upstream headway to a third, intermediate headway, followed by
either another traveling wave or a dispersive wave further downstream matching the downstream headway.
This intermediate value of the headway is selected such that the nonlinear traveling wave is the fastest stable
traveling wave which is observed to develop in the numerical calculations. The development of these nonlinear
waves, connecting linear stable flows of two different headways, is somewhat reminiscent of stop-start waves
in congested flow on freeways. The different types of adjustments are classified in a phase diagram depending
on the upstream and downstream headway and the response time of the model. The results have profound
consequences for autonomous cruise control systems. For an autocade of both identical and different vehicles,
the control system itself may trigger formations of nonlinear, steep wave transitions. Further information is
available[Y. Sugiyama,Traffic and Granular Flom{World Scientific, Singapore, 1995p. 137.
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[. INTRODUCTION stable and safe convoys. Insight into the phenomena associ-
ated with car-following models gives insight into ACCS.
Increasing congestion and travel times are forcing a furOne common and fundamental process is the merging of a
ther extension of the road network. Nowadays, due to enviplatoon of moving cars at one headway into a platoon mov-
ronmental pressure, a compromise lies in the application o9 with a second headway. This situation appears at bottle-
technologies to optimize the efficiency of existing roads withnecks and lane merging. It is important to know what tran-
respect to throughput and speed. Monitoring freeways angitions can possibly occur in the system to prevent
on-line traffic data provide important information for these instabilities and dangerous traffic situations.
projects which are based on mathematical models of traffic In this paper we classify the rich variety of those transi-
flow [1]. tions between different headways. We examine flows in the
Hitherto the aim of these models was to reproduce phelinearly stable regime of the Bando model, in which the
nomena of traffic such as flow breakdown, stop-and-go trafacceleration of a cam is given by
fic and the speed of shock waves traveling upstream and o
causing rapid breaking. One approach is a car-following Xp=vp=2a[V(b,)—v,], (N
model. It consists of a dynamic equation for the speed of
every car depending on its current speed, its inertia, the driwwherex, is the position of the cam,v, its speed, ant, its
er's reaction time, the headway to the car in front and théreadway. The optimal velocitfOV) function
changing of the latter with time. Since every single car is
modeled, it belongs to the class of microscopic models. V(b)=tani(b—2) +tanH2) 2
The advantage of car-following models is that they both
model traffic flow and have practical applications in form of describes the desired speed of a driver at a distarehind
autonomous cruise control SyStEWCS). These systems the car in front. It is a monotonic increasing function with a
link each car to the preceding car via a follow-the-leadermaximum speed/(b—c) andV(0)=0. This corresponds
algorithm similar to the governing equation of a car- to ideal vehicles of length 0. The constant of proportionality,

following model. The target is to enable high flux driving in & is called the sensitivity.
Bandoet al. showed that the model is unstable in a head-

way range
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For these conditions an initial uniform flow breaks down
under the slightest perturbation and turns into stop-and-gc
traffic. This is characterized by stable regions of high speed§

merging into regions of low speed so as to conserve totalg 29T
flux. The high and low speed flows are both in the stable®
regime. The shape of the traveling fronts of these clusters 22|
their speed, the density inside and outside the cluster, as we
as their outflow are characteristic parameters of traffic flow 27r
[3].
However, the dynamics of transitions in the two stable 28 o 5 o 5 10
regimes X
b<bCl (5) FIG. 1. Initial conditions {=0): various wave types evolve
from a discrete jump in headwd¥ig. 1).
and

(4) it is clear that a platoon of cars is more stable the smaller
b> bc2 (6) the inertia is. Heavier vehicles of higher inertia, which can-
not react sufficiently fast to changing traffic situations, are
have received less attention. Here, we examine the richnessore likely to cause flow breakdown. We therefore study
of behavior which may develop when one stream mergesraveling waves with increasing sensitivigycorresponding
into a second. This is a generalization of the nonlinear tranto more stable flow. A= 2.0 the flow is just on the verge of
sition waves found in these earlier studies and provides newstability.
insight into the selection of nonlinear stop-go waves. In Sec. In our analysis we consider transitions which evolve from
Il we identify different transition phenomena as the size ofinitial conditions similar to Fig. 1. The jump of headway is
headway jump across the transition varies. Section Il relate@etermined by the boundary conditioms =b(x— — ) and
a nonlinear wave type of the stable regime to the stop-and-gp, =b(x—=). We prefer to present the figures with lines
jam fronts of unstable flow. Although the main part of our rather than with dots representing each car. This simplifies
study uses the Bando car-following model, we include some&omparisons of traveling wave solutio(fsig. 2).
calculations in Sec. IV using another OV function suggested
by Herrmann and Kernd#] which reproduces all the quali- A. Transition involving a decrease in headway:
tative features of data from the German autobahn although Decelerating traffic
some quantitative details are different. This is to see whether ) , o
the range of wave types found in Sec. Il are an intrinsic ©Once the optimal velocity functiol is given, the only
feature of car-following models based on a relaxation term'€Maining parameter in the system is the sensitigitf-or
In Sec. V we make some remarks on the possible impact dlifferent a the analysis of the wave fronts in terms _of up-
this transition classification on bottlenecks and ACCS. aStream and downstream headways can be summarized in a
brief discussion of a more realistic convoy of multi-speciesdiagram as shown in Fig. 2. On the verge of instabiligy (
vehicles follows in the Appendix. =2.0), deceleratmg.trafﬂ_c can be c_Iassmed in six categories.
There are monotoniéregion ), oscillatory (region II), and
dispersive transitiongegion Ill). These can be explained by
looking at the fundamental diagram of this modElg. 3
The transition between traffic flows of different through- which describes stationary, homogeneous flow situations
put is a well observed phenomenon. Bottlenecks, speed Iin['i)nzozvn:V(bn):V(b)]_ The solid line illustrates the

its, cars entering a jam or emerging from it are typical situ-flow q as a function of the density= 1/b,
ations. Here, we study transitions which occur in freely

moving traffic without local speed limits or any other artifi- V(b)

cial hindrance due to road layout. We expect the transitions q(p)=pv(p)=0q(1b)=——. ®
that evolve to travel along the road either up or down stream.

Their direction and shape depend on the OV function and thén case of a monotonic traveling wave soluti@hock wave

Il. TRAVELING WAVES OF THE STABLE REGIME

sensitivity. of region ), both up and down stream headways are greater
If the governing Eq(1) is divided bya, it reads than the turning poinb,,= 2.0 and occur at a densify that
is smaller than the turning poipt,= 1/b,,= 0.5 (Fig. 3). We
Eb ~V(b,)—v 7) can interpret this result in the lim&>1. Then the Bando
a" neoone model corresponds to the continuum model of Lighthill and
Whitham[5]
This shows that the inverse of the sensitivity can be inter-
preted as the inertia of cars. From the instability criterion Eq. pi+0x=pi+ (pV(1lp)),=0. 9
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FIG. 2. Transitions of decelerating traffia{ 2.0) derived from numerical data: I: monotonic, II: oscillatory, Ill: Bando wave and second
shock wave, IV: Bando wave, plateau and dispersive tail, V: jump and dispersive tail for large jumps in headway, VI: purely dispersive; AT:
region of accelerating traffigrig. 5).

For this model the method of characteristics shows that For waves of region | the local upstream wave speed

the local wave speed(p) is given by the slope of the as a function of position in the wave increases down

tangent of the fundamental diagram at its corresponding derthe road. This leads to a shock wave solution where the

sity wave speed is given by its upstream and downstream
densities

c(p)=d,(p). (10)

For densities greater than the dengity;=1/3 of maximum
flow the slopes are negative and the information travels up-
stream.

a(p+)—d(p-)
c=——"—.
P+—P-

(11)
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creasing sensitivity regions Il and IV shrink until they vanish. Re-

FIG. 3. Fundamental diagram: the transitions oscillatory wavegion V spreads out between regions IV and VI. The region Il of

— Bando wave (ose» bw) and the Bando wavébw) itself ap-  oscillatory waves shrinks too, since the traffic flow reacts faster to
proach the fastest wave with increasiag changes in headway due to lower inertid/a.

For purely dispersive wavegsegion VI), both upstream and

downstream densities are bigger than the turning point andpstream headwaly_ to an intermediate headwdy,,, rep-

the magnitude of the wave speed across the profile now deesented by the dotted line between regions Il and IV in Fig.
creases. This means that the speed of propagation of info2, before it eventually matches the downstream headway
mation decreases as one moves downstream. Hence drivdtgough another shock wavie,,, is a function ofb_ and the
entering the transition react faster to the traffic situation tharsensitivitya and can only be determined numericdi}. We
drivers further downstream. Therefore, the number of driversefer to this nonlinear wave between the upstream headway
who are part of the decelerating maneuver grows and a dig_ and the intermediate headwhy,, as a Bando wave. For
persive tail forms. A traveling wave solution does not existall points of region IIl the solution consists of two shock
in this regime. waves of different speeds.

The oscillatory wavedregion 1)) always have an up- For lower downstream headways thiag,, the transition
stream density smaller than the turning point, but their downinvolves a Bando wave followed by a plateau of increasing
stream density can be smaller or bigger than the turningength with a dispersive tailregion V). Transforming the
point. It is therefore not as straightforward to interpret theheadways of this graply,_=3 andb, =0.5, into the funda-
results. One has to be aware that the fundamental diagramental diagram Fig. 3, the corresponding densities are rather
shows the flow as a function of the density only for a steadyfar apart from each other with the turning point in between.
flow. Generally, for nonstationary situations, the flow is not aTherefore, the magnitude of the local wave speed across a
function of the density any more. A givem might corre- monotonic profile between these two headways firstly in-
spond to various flows depending on the traffic situationcreases, leading to a shock wave, and then decreases, leading
Hence the wave speed is not a function of the density. On& a dispersive wave.

example is a traveling wave solutigregion ). Every point The wave profile we obtain consists of these two types of
along the profile has the same wave speed even though tleaves as expected, with a platelay~ 1.3 overshooting the
density varies. turning pointb,=2 due to the inertia of cars. The plateau

However, in the limit of transitions involving small forms because the upstream speed of the shock wave is
changes of headway and wigh— <, we expect a monotonic higher than the local speed of the dispersive tail at its onset.
transition, since cars assume their desired speed immediatdly terms of fluxes, the shock wave provides more cars per
and react sufficiently fast to the surrounding traffic situation.unit time (outflow of the shock wavethan cars beginning to
For greater jumps in headway and smaller values of the semreak at the onset of the dispersive taifflow of the disper-
sitivity, deviations from the monotonic adjustment occur assive tail.
oscillatory waves in a similar fashion to the transition from If the upstream headway is too bigegion V), the differ-
overdamping to underdamping of a spring. With these largeence of speed between the shock wave and the onset of the
changes in headway, the inertia of cars is too big to allow fodispersive tail is negligible. The wave profile assumes a so-
simple monotonic transitions in flow. lution where the dispersive tail and the shock wave have the

However, when the jump in headway increases to a cersame speed and no plateau forms.
tain value the oscillations become so big that the wave jumps For higher sensitivities, equivalent to smaller ineffg.
on to another solutioriregion Ill). It consists of two shock 4), the cars react faster to the traffic situation. Therefore, the
waves of different speeds with a growing region of slowregion of oscillatory waves, and hence Bando waves, shrinks
moving traffic in between. This solution first jumps from the until the latter eventually disappears. Monotonic and purely
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FIG. 5. Transitions of accelerating traffi@€2.0): I': mono- FIG. 6. Transitions for accelerating traffia€ 2.4): again, with
tonic, II': oscillatory, IlII': Bando wave and second shock wave, increasing sensitivity regions [lland IV’ shrink until they vanish.

IV': Bando wave, plateau and dispersive tail, Mpurely disper- ~ Similarly region V spreads out between regions’ldnd VI' and
sive; DT: decelerating traffi¢Fig. 2); the wave phenomena are eventually takes the place of region’lV
equivalent to decelerating traffic apart from a missing regidn V
analogous to region V in Figs. 2 and 4. For a headwayb_, equivalent to a densitp_=1/b_,

. . ) ) the downstream density of the fastest wave is given by the
dispersive wavesl and V1) still exist and waves of type V  extremum of the wave speed E@.1). Setting the first de-

take the place of plateau wavetype IV). For largea,  rivative to zerg ¢/ (p.)=0] and excluding_ = p. leads to
a>2.0, four different wave types remain: monoto(ig os-

cillatory (1), purely dispersivgVl), and shock wave plus ) ad(p+)—d(p-)
adjoining dispersive tail without plateau in betwe@h. a'(p+)= P (14)
B. Transition involving an increase in headway: which can be solved numerically for any OV functidh
Accelerating traffic Equation(14) defines the maximum speed as the point where

Once the diagrams for the wave types of decelerating trafth® chordp_—p, and the tangent g, are identical. It
fic (Figs. 2 and #are worked out, those of accelerating traf- 40€s not necessarily mean that this traveling wave exists
fic can be obtained by a mathematical transformation. BySince the transition can also occur as a dispersive wave.

subtracting the governing equatiofi$ for two adjacent cars N Fig. 3 we choosé_=3.0 and find the fastest wave
n+1 andn, we obtain the equation for theth headway possible as the tangent of this point onto the flow curve. The

’ downstream headway,, =1.54, of the fastest wave corre-

b,=a[V(b,.1)—V(b,)—b,]. (12)  sponds to a density, =0.65. Asa increases the headway

jump at which the oscillatory traveling waveegion Il) is
For the OV function, Eq(2), this equation is invariant under replaced by the Bando wav@egion Ill) approaches the
the transformation headway jump associated with the fastest wave. Similarily
the headway jump at which the Bando waegion Il is
b’=4-b. (13)  replaced by region IV also approaches the headway jump

As a consequence the wave profiles are svmmetric about associated with the fastest wave. This is consistent with the
q P y shrinkage of region Il(Figs. 2 and %

=2 and this relates accelerating and decelerating traffic. The The curve of maximum speed E@.4) can now be added
diggrams shoyving thg \{ariety of the wave types .associatepo Figs. 2 and 4 which yields Fig. 7. It shows that there are
with a(':celeratln'g trafﬂtﬁFlgs. 5 and are simply derived by only two points where the fastest wave exists and these are
reflecting the dlagrams _Flg,s. 2 and 4 at the meO/Z'O' the vertices of region Ill. For values af greater than the
Here, the dispersive regio’ only appears for higher values bifurcation point,a=2.43, region Ill disappears and there

qf a (F'g'h@’ because .'tS Iupsf[ream g'eag:w?y WOlijl.d be N€9%re no Bando waves in the system. The fastest waves pre-
:Ir\lle?sz\r;ne tence n;etanln%eﬁélg. (‘;’);th |r(;1_| arly we |sc0\]/ceé icted by the fundamental diagram lie entirely in the disper-
ypes ot transitions and the disappearance ot bandg, regions V and VI. For values Z(a<2.43, they are
waves and plateaus for sufficiently high either part of the dispersive regimes V and VI or of the
Bando wave regime lll. In the latter case the solution jumps
on to the slower Bando wave. We conclude that in the stable
For any given upstream headwhy the model predicts a regime,a=2.0, the fastest wave predicted by the fundamen-
fastest traveling wave; this can be identified from the fundatal diagram can only be found for two cases which corre-
mental diagram. spond to the vertices of region lll, the Bando wave region.

C. Fastest wave and Bando wave

036107-5



PETER BERG AND ANDREW WOODS PHYSICAL REVIEW B3 036107

3.5

" fastest wave

61 e S =500 ——
a=2.4 - _
b . bifurcation point  + a=1.0
5F 3|
g
4r g 25¢
(1]
=
3 B -
P 2 Avnvnvnvhv
2
15 L L L 1 N
) ) - . . . . -1000 -800 -600 -400 -200 0
0 05 1 1.5 2 25 3 35 X

b,

FIG. 9. Onset of instability: wave profile of a platoon of cars
FIG. 7. For a given upstream headwhy the fastest wave aftert=500 anda= 1.0 for a freely accelerating, leading vehicle at
theoretically possible is either not accessible or just for two casesx=0 andt=0 fromb_=2.0.
Bando waves. Otherwise it is either part of region(Bendo wavg

or of the dispersive domains V and VI. vn-1(t—2)=V(b—»)=tanhf)+tanh(2). This simulates

. . . . the end of a temporal speed limit along a motorway.aAt
Since this region disappears for largeno fastest wave can _ 1.0 the model is unstable fdr=2.0 and aftett =500 the

be found for highly stable traffia>2.43. oscillations in the platoon mark the onset of traffic break-
down. However, we can already observe the plateau effect.
ll. STABLE AND UNSTABLE FLOW PATTERNS Now one can set up a mapy(b_) say, which specifies

In this section we show that the jam fronts of stop-and-gothe plateau headway as a function of the upstream headway,

traffic correspond to two specific Bando wave solutions ingqfrfboth acgeleratmgk?nd decelefrar:tmg tr;fflc. 'I(')he qgahtatlve
the unstable regime. ifference between the maps of the stalde=@.0) and un-

Holland [7] investigated the plateau effect for unstabIeStable. €<2.0) regimes is significant_ as §hown in Fig. 10.
The line 4-b, that represents the invariance of Ed2)

flow a<2.0. This can be discovered by setting up special .
road conditions as illustrated in Figs. 8 and 9. The first figuré'Nder the transformatiofil3) cuts the curve of the Bando

exhibits how an initial steady flow of uniform headwaly,( waves only fora<2.0. The intersections tel us how tc_) fit
=20 att=0) evolves, if the leading car approaches regBando waves for accelerating and decelerating traffic to-

traffic lights (X) and decelerates until it comes to a standstillgether to obtain the traveling jam fronts of stop-and-go traf-

atx=0. The wave profile of Fig. 9 evolves from the same /IC: Starting with an arbitrary headway. of, say, decelerat-

initial conditions. Now the leading car acceleratestato N9 traffic for a=1.0, the map gives the corresponding
and x=0 from v,_,(t=0)=V(b=2) to maximum speed headwayb , of the plateau and hence the Bando wave. Now
n=

using this as the new headwhy for accelerating traffic, we

25 : : : : obtain the corresponding headway for the next Bando wave.
=500 —
5
a=1.0
2 VAV“VAVA" b
4
S 15 B
: 3
3
o
~ 1 L
2F
05}
i}
0 L L L L - -
-1000  -800 -600 -400 -200 0 °

X

FIG. 8. Onset of instability: wave profile of a platoon of cars  FIG. 10. Phase diagram of the Bando wave for different sensi-
aftert=500 anda=1.0 for an initial {=0) homogeneous flow of tivities a. Only for a<<2 can they be fitted together to yield the
headwayb=0 and a leading car at=0. typical jam fronts of unstable flow.
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Therefore the curve defines a recursive rhap=f(b_) and 120

b_=1f(b,), respectively, for both decelerating and acceler-
ating traffic. Iteration leads to two fixed points, which corre-
spond to the intersections with—b,, and this gives the
stop-and-go pattern fa<2.0. Fora=2.0 there are no fixed
points and hence no jam front pattern. This may be under-&
stood since the flow is stable and no flow breakdown ap-§

unstable
vt

100

80

/h

60 |

spee
.

pears. w0 | |
Moreover, the asymptotic behavior of the curae 2.0

suggests that the fixed points are a linear function dor 20 | |

=2.0. In fact, for an OV function Eq(2) Komatsu's[8]

results reveal that the jumppb of headway across the wave 0 - - - - - -

front neara=2 can be approximated Hy] 0bm 002 004 006 008 O 012

headway [km]
Ab=1.581y1-0.5. (15 FIG. 11. The optimal velocity functioW,,(b) of the Kerner—

. . ! Konhaiser model. The flow is unstable for headways 18Im
This analysis shows that Bando waves define one class Qf3g m p s the average space that cars occupy in a standstill.

solutions for the stable and the unstable regime. Plateau ef-
fects can also be found for various upstream headways in the
unstable regime. However, when the instability sets in, even-

tually only two specific solutions of this class are picked out
and evolve. These are the stable, nonlinear stop-and-

waves. This establishes a link between Bando waves and t
work of Bandoet al.[1,2].

0=0.02875. (23

ax 1S the average density of cars in a jam and therefore its
averse the average lengh.in= L/pmax that a car occupies.
vo determines viavi:=Vy () the free flow speed. These
two quantities can be measured easily. It is far more chal-
lenging to fit T, p;, and o to traffic data; one significant
difficulty, amongst others, is that the flow consists of a range

It is of interest to examine whether similar types of tran- Of different vehicles. Nevertheless this model simulates data
sitions occur for other OV functions. This might support thethat was obtained from a German autobahn surprisingly well
idea that the wave types found in Sec. Il are an intrinsid 4J-
feature of car-following models with relaxation terms based In comparison to the Bando model, there are three major
on a OV function. Kerner and Konhaer considered a model features which are important: the speed is only positive for
based on traffic data that does not depend on the car numbBgadways bigger tham,,, (Fig. 11 and by analogy the flow
and, therefore, averages over all cars to obtain a dynami§ only positive for densities smaller tham,, (Fig. 12.

IV. COMPARISON WITH OTHER OV FUNCTIONS

equation of the fornj4] Second, the flow is unstable in a regirb@ﬁlS m<b
<36 m~b,. These two features are different from the
: :l Vou(bo) — 16 stable Bando model. On the other hand, one feature that the
Un (Vik(bp) —vp) (16) . . . .
T models have in common is that the flow has a turning point
. ] and this seems to be important for traveling waves as dis-
with an OV function cussed in more detail above.
1 1 Figure 13 shows how linearly unstable platoons of cars
Vii(b)=vq 1+eXp—p'> —d} 17) with headways of 35 m and 30 m, respectively, merge. After
Pmax0
3000
and
2500 -
1-p;/ -
d= ( 1+eXF’w (18 2000 |
g
]
Here the parameters are estimated to have the following valg 1800 ¢
ues based on data from the German autobahn: < Looo b
T=0.985 s, (19 500 |
Pmax= 180 veh./km, (20 0 . s . .
0 50 100 150 pmax200
vo=100.8 km/h, (21 censiy ik
FIG. 12. Fundamental diagram: the flow vanishes for standstills
pi=36.5 veh./km, (22 (pmay - The curve contains a turning point like the Bando model.
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0.06 : : ——— - delay time explicitly into the dynamic equations, no matter if
\-500s — they are continuum or car-following models, as the Bando

oo 3 )= 1 model Eq.(1).

0.04 J

V. PERIODIC BOUNDARY CONDITIONS

The results presented so far refer to a step function as an
initial condition (Fig. 1). It is of interest to know how the

headway [km]
o
Q
W

0.02 r i ] profile evolves in case of periodic boundary conditions. This
L can either be considered as a train of density pulses along an
0.01 ] infinitely long road or as one density pulse on a circular road.
The latter case was investigated by Nagat8hiHe stud-
0_10 g o s 10 ied the relaxation process from nonuniform flow to uniform,

steady flow in freely moving traffic on a circular road. Ini-
tially there are two density regions connected by kink—

FIG. 13. The evolution of an initial jump in headway in the antikink waves. As time evolves the density profile assumes
unstable regime. The typical jam cluster forms at the tail. a triangular shock wave solution whose amplitude decays

with time. This solution can be described by Burger's equa-
500 seconds the flow consists of clusters of vehicles witttion derived from the original optimal-velocity modHEq.
rapidly oscillating headways which are followed by the (1)] in the stable regime.
stable jam pattern of stop-and-go traffic betwee® km However, a triangular shock wave solution also arises
and —2 km. The headways of the latter, 48 m and 12 m,from an initally uniform flow on a straight road that is dis-
respectively, are not symmetric around the turning pbjpt  turbed by a pulselike density variati¢f]. This shows that
~26 m [q"(1/b,)=0] any more, since the corresponding unless we are in the metastable reg{k stable wave struc-
dynamic equatiorf12) for the headways is not invariant un- tures can only be found on straight roads for different values
der an appropriate transformation analogous to (E§). of the upstream and downstream headwdys#b,). For

However, this system contains Bando waves for suitablgeriodic initial conditions or periodic boundary conditions
upstream and downstream headways shown in Fig. 14. Thigircular roadsthe wave profile eventually assumes a steady,
nonlinear wave is formed very rapidly from the initial con- uniform flow solution. This can be explained in the phase
ditions. The Bando wave already appears before the flowiagrams, Figs. 2 and 5. We consider two step functions
becomes unstable and breaks down. Bando waves can alsonnecting regions of two different headways, &gy, and
be found for smaller, stable upstream headways as long ds,,, as initial conditions. This means that the profile exists
the downstream headway remains stable. of wave solutions Bgn,biow) and Ojow ,bhign) , respectively,

In a more detailed numerical study we found most typesorresponding to two points in the diagrams, Figs. 2 and 5. It
of transitions of the stable regime as classified in Sec. Il apartan be seen from Figs. 2 and 5 that at least one of these two
from the oscillatory(region Il) and dispersiveregion V) points lies in one of the dispersive regimes. It is not possible
solutions. The oscillatory wave type could not be repro-to connect a monotonic or oscillatory wave to another one
duced, even though it is observed in stable traffic flow. Anand thus obtaining a stable wave structure. Therefore, disper-
explanation for this discrepancy between the model predicsion is inevitable and the wave profile eventually assumes
tions and the data may be that it is necessary to introducthe steady, uniform flow solution.

x [km]

0.045

t=1t3'8: __________ VI. IMPACT ON BOTTLENECKS AND AUTONOMOUS
0od | . 125008 ] CRUISE CONTROL SYSTEMS
The effects we have discovered have significant implica-
T 0.035 - 1 tions for speed limits and bottlenecks. They predict that for
= certain jumps of headway determined by either of these mea-
g o033 1 sures the traffic flow locks on to a nonlinear wave. The
g bottleneck determines the downstre@upstream headway,
S o025} 1 whereas the type of transition that evolves also depends on
the flow further upstreanidownstream The most desirable
0.02 1 transition in a bottleneck is the monotonic type. Oscillatory
waves cause rapid breaking and acceleration which leads to
0.015 o ~ . . ” o higher fuel consumption and dangerous traffic situations.

The same applies to Bando waves which, in addition, contain
a congested region. Therefore, it might be of greater use to
FIG. 14. Cars can adjust from an upstream to a downstrearet up bottlenecks and speed limits stepwise along the road

headway via a Bando wave even though parts of the headwaydepending on the upstream traffic situation. Each stretch de-
involved in this transition are unstable. creases the speed by a moderate and monotonic transition.

x [km]
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This can be a safer and more stable method than a localizdent to small inertia, the cars react fast enough to the traffic
large decrease in speed at a speed limit. situation and the wave does not assume this specific solution

This has to be taken into account when implementingany more. For these sensitivities Bando waves and plateaus
ACCS. The main goal of this application is to couple cars inare not solutions.

a convoy by electronic control of their speed and accelera- For a given upstream headway the fastest traveling wave
tion by an algorithm based on a car-following law. This predicted from the fundamental diagram is either not acces-
should result in a stable autocade of high safety and flux. sible or, only for two specific upstream headways, just as

The major problems of convoy driving are the merging of Bando waves. In the first case its corresponding headways
cars at on- and off-ramps or at lane merging and the adjustre either part of the dispersive regime or it locks on to a
ment to bottlenecks and speed limits. All these road featureslower Bando wave.
have an impact on the autocade by changing the density of There is a strong connection between Bando waves and
cars locally. From our analysis we expect transitions betweetraveling jam fronts of stop-and-go traffic of unstable flow.
these regions of different headways traveling upstream ofhey are analogous, but while Bando waves can be found for
downstream along the road. The aim of any control algovarious upstream headways for a given sensitivity, these jam
rithm would be to avoid oscillatory and Bando waves. fronts are uniquely determined. Jam and free flow densities

A more realistic discussion should include the simulationare functions of the sensitivity only.
of varying vehicle characteristics amongst the platoon. This The wave types can be interpreted by the fundamental
represents either different driver types, cars or control algodiagram. The higher the sensitivity the faster the cars react
rithms. Different characteristics can be simulated by theand the closer the actual dynamic flow is to the equilibrium
variation of the sensitivity or the OV function as a function flow. However, for small sensitivities the actual flow may
of the car number. This is a comprehensive, stochastic taskliffer significantly from the fundamental diagram. Therefore,
However, even a simple oscillatory variation of the sensitiv-an interpretation of the observed transitions is not as straight-
ity along the platoon reveals interesting results. forward any more.

As shown in the Appendix, it only requires a few cars to We compared our results to a different car-following
cause phase transitions in the system which lead to time denodel based on parameters fitted to real traffic data. We
lays and harsh breaking maneuvers. The wave type thdbund all types of waves apart from the oscillatory transitions
evolves(monotonic, oscillatory, Bando wave, etclepends and one dispersive type due to the choice of the sensitivity
on the composition of the vehicles with regard to their con-parameter. It shows that the wave types we found might be
trol algorithms. In a multispecies flow these vary from car toan intrinsic feature of car-following models with relaxation
car. Itis therefore harder to predict what implications a giventerms.
speed limit or bottleneck has on a multispecies flow. How- The Bando waves play an important role when consider-
ever, the accuracy of the predictions increases when the coimg varying sensitivities. Once the system assumes this solu-
trol algorithms converge. tion, the growing region of congested traffic between the two

Speed limits which vary with time can be regarded as ashock waves does not necessarily dissolve when returning to
changing bottleneck. They can be adjusted to the currerttigher sensitivities. Hence, even in a linearly stable system
upstream traffic situation. However, there are bottlenecksve can find irreversible phase transitions.
which have static characteristics such as maximum speed and This has to be taken into account when implementing au-
throughput given by the road layout, for example. In thistonomous cruise control systems. The algorithms must be
case optimal safety, stability, and flux might be obtained byfitted in order to avoid increasing travel times and harsh
dynamic algorithms which adjust to the downstream bottle-breaking maneuvers. This might be realized by dynamic al-
neck situation. In-vehicle information of the oncoming traffic gorithms which take the current downstream traffic situation
situation as realized by mobile technology or beacons alongto account.
the road could deliver the required data.
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following model. Once the parameters of the model, the sen-

sitivity and the OV function, are given, the wave types can APPENDIX: MULTISPECIES ELOW
be represented in a diagram by their upstream and down-
stream headways. There are six possible transitibigs 2): The advantage of discrete car-following models compared

monotonic, oscillatory, purely dispersive, shock wave plusto continuum models shows when different vehicles on the
dispersive tail, shock wave plus plateau and adjoining disfoad are simulated. Clearly, one has to expect new effects, as
persive tail, a nonlinear shock wave plus plateau and a sethe impact of a lorry on an autocade of identical cars sug-
ond shock wave. gests[10].

In the latter case the two shock waves have different Using the Bando model there are two ways to simulate
speeds and are separated by a growing region of congestedwarying vehicle characteristics: introducing functicmgsfor
free flowing traffic. For sufficiently high sensitivities equiva- the sensitivity or for the OV functioV,, depending on the
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FIG. 15. Initial t=0) Bando wave fora=2.0 followed by a FIG. 16. Evolution of a transition frorh_ = 3.0 tob = 1.6 with

convoy of cars with higher sensitivitg=2.4. The Bando wave varying sensitivitya,=2.4+0.2 sin(2m/100): the shape remains
changes shape but neither dissolves nor assumes the oscillatavgcillatory.
shape as in Fig. 16.

hicles is small. Already for this simple case the continuum
vehicle number. Here, we restrict ourselves to vary the sermodel will fail to reproduce an appropriate picture of the
sitivity a only. This is because we can interpret numericalactual traffic events.
results by using the diagrams Figs. 2, 4, 5, and 6. In this work we varied the sensitivity as a function of the

In contrast a continuum model now contains an additionatar-numbemn in a sinusoidal form

differential equation for the sensitivity and is more difficult
to simulate numericallya must be a function of space and a,=ay+ esin(2mwn/N) (A5)
time a(x,t), since it has to travel with the cars and hence the
flow. As an example we consider the analogous continuunand investigated how traveling waves change in shape with
model of the discrete Bando model as derived in R&f.In  time. Even though it seems to be both an unrealistic distri-
addition to the coupled, first order, partial differential equa-bution and very specific, it reveals that the system can go

tions (PDE) for densityp and speed, through an unexpected phase transition: once the system has
switched to a certain state like the Bando wave, for example,
pit (pv)y=0, (A1) it does not necessarily assume its initial wave solution again,

an oscillatory transition for instance, that corresponds to the

Oy Prx p)Z( average sensitivitpy. Whether a phase transition occurs or
vitvvy=a[V(p)—v]+aV'(p)|—+———=|, (A2 not depends in a complex manner on the parametgrg, n,
2 2
P 6p° 2p andN.

| btai ‘ . ‘ Figure 15 shows an initial Bando wave=0) for a
we also obtain a PDE foa. Because it must be constant for _, o Fort>0 the sensitivity of the upstream cars is con-

each car, we obtain simply stantly a=2.4. From Fig. 4 é=24, b_=3.0, b,
d : : : : :
aa(x,t) :at+Uax:O. (AS) t_;gg -

8 3 1=1000 -~ |
t=1600 -

The flow is then determined by the initial conditions 1=2200

p(0=po(X), v(X0)=vo(X), ax0)=agx). (A4d) 25y

dway

For slowly varying sensitivities across the autocade and ing
the limit of small changes in headway this model is an accu-~ 2|
rate first order approach of the discrete verdiéh For ran-
domly distributed sensitivities and rapidly changing head-
ways as in real traffic flow, however, the solutions 15 H/
increasingly diverge from this model.
A classic example is a single truck of sensitivity sur- : : . : :
rounded by cars of.. Even though if the convoy is of -2000 1500 -1000 -S00 0
almost uniform density and speed, the gradient of the sensi- X
tivity (d/dx)a(x,t) in the continuum picture can be very  FIG. 17. Evolution of a transition froth_ = 3.0 tob, = 1.6 with
large near the truck, if the distance to its neighboring vewarying sensitivitya,= 2.4+ 0.4 sin(2m/100): Bando wave forms.
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=1.6) we should eventually expect an oscillatory transition(Fig. 17). It still gives the same meaay=2.4 but a higher
rather than a Bando wave. However, once the system hagrianceA ,
assumed this solution consisting of two waves, it cannot re-

turn to its initial state simply because the two waves keep 100
going at different speeds. Thus, they do not merge into the Ag=—— E (an_ao)z’ (A8)
state shown in its corresponding diagram. Only the plateau, 1007=0

the intermediate headway, changes its value. and hence a higher percentage of those sensitivities which

F'Q‘ers 1.6 and 17 give e_xamples of how such a phas@orrespond to a Bando wave. Now there is enough time dur-
transition might occur. The first represents the steady statfy, 5 cycle to form a sufficiently wide gap between this wave
solution (=0) of a transition fromb_=3.0 tob, =1.6 and  5nq jts corresponding downstream shock wave that does not
sensitivity a=2.4 (Fig. 4). For t>0 the sensitivity of the gjissolve during the next cycle. Therefore, a growing gap of
upstream cars varies like varying shape forms that leads to an increase in travel time.

B . An analogous situation appears for accelerating traffic. This
an=2.4+0.2siM27n/100). (AB)  Jeads to a decrease in travel time.

These few examples show already that a small fraction of
- - i : " vehicles can cause a phase transition in traffic flow. For ran-
=2.4. After t=1000 we sitil .ﬁnd an (_)_sq|[latory transition domly distributed sensitivities among the vehicles the mean
even though the cycle contains sensitivities analogous to_go and the variancd ;, seem to be the two decisive variables
Bando wave. However, their percentage of the whole cycle ig, e system that determines what state it most likely even-
simply not sufficient to switch the state to this nonhneartua"y assumes. Varying sensitivities might, therefore, ex-

One cycle contains 100 cars and its mean is obvioagly

wave. _ _ _ plain effects of traffic flow which have not been reproduced
This changes if we increase the amplitude to with constant sensitivitg and OV functionV yet. This sto-
chastic approach delivers plenty of problems and questions
a,= 2.4+ 0.4 si(27n/100 (A7) for future work.
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